American Journal of

Electronics & Communication

Prankush Giri et. al., American Journal of Electronics & Communication, Vol. Ill (4), 20-23

UTILIZATION OF THREE.JS AND UNITY TO MAKE A
WEBGL API TO PERFORM 3D IMMERSIVENESS IN

WEB
Prankush Giri, Sayanabha Chandra, Subhrajyoti Chakraborty and Panchali Datta Choudhury

University of Engineering and Management, Kolkata

Abstract

Hats off to Prometheus, who stole fire from heaven.
From fire to WebGL, it’s a long journey. But in
today’s world, WebGL is said to be the world’s
greatest invention. This paper is on the inquiry of
the Web3D visualization methods in WEB.
Three.js is a perfect 3D graphics engine out of
many We- bGL frameworks that has a lot of built-
in lights and materials. Meanwhile, it provides
many convenient functions for this study. In
addition, this research can be applied to the
customization of LED lights and lanterns, interior
de- sign, etc. This article introduces a Kkind of
Web3D technology along with Unity 3D engine,
that combines great advantages in GPU
acceleration in fields of game designing and visual
effects. The basic scene setup is a bit different from
Three JS and Babylon JS because Unity has its own
editor. All the basic things like creating a scene,
adding mesh and lights can be done directly from
the editor without coding a single line. This is a very
ba- sic Unity feature and anyone with a little
experience with the program can easily do this by
adding the necessary objects to the scene from the
Unity menus. Unlike Three.JS and Babylon.JS,
Unity does not require the creation of a rendering
loop, which is done automatically by the game
engine.

Keywords:

three.js, Immersiveness, augmented reality, virtual
reality, unity 3d engine.

Introduction

Threejs is a 3D JavaScript library that allows
developers to create 3D environments for the web. It
works with WebGL, but we can also do it with SVG
and CSS. WebGL is a JavaScript API that renders
triangles on the canvas at remarkable speed. It is
compatible with most modern browsers and is fast

AJEC | April, 2023 | © SMART SOCIETY | (www.ajec.smartsociety.org)

because it uses the graphics processing unit (GPU) of
the visitor.

For the sake of the tutorial, WebGL can draw more
than triangles and can also be used to create 2D
experiences, but we'll focus on 3D experiences using
triangles for the sake of understanding.

A GPU can perform thousands of parallel calculations.
Imagine we want to render a 3D model and that model
consists of 1000 triangles - which, when I think about
it, isn't that many. Each triangle contains three points.
When we want to render our model, the GPU will have
to calculate the position of these 3000 points.

Once the model points are well positioned, the GPU
must draw every visible pixel of these triangles.
Again, the GPU can handle thousands and thousands
of pixel calculations at once.

The instructions for placing points and drawing pixels
are written in what we call shaders. Shaders are hard
to master. We also need to provide some data to these
shaders. For example: how to place points according
to model transformations and camera properties.
These are called matrices. We also need to provide
data to help colour the pixels. If there is a light and the
triangle is pointing towards that light, it should be
brighter than if the triangle is not.

And that's why native WebGL is so hard. Drawing one
triangle on the canvas would take at least 100 lines of
code.

However, native WebGL benefits from existing at a
low level, very close to the GPU. This allows for
superior optimization and greater control.

Page 20

Prankush Giri et. al., American Journal of Electronics & Communication, Vol. Ill (4), 20-23

SETTING UP A SCENE

To begin, create a plain index.html file:

<script sre=" pt.js"></script>
< /body>
</html>

And a simple | script.js file:
console.log('Hello Three.js'
Fig: 1. Setting up a scene
Now we need to load the Three.js library.

<seript sre=
<script src=

ake sure to load | three.min.js before your 'script.js ; otherwise, your script will not be aware of what's
nside the | three.min.js file.

Fig: 2. Loading the three.js library

WE NEED A CAMERA RENDERER AND THE
DOM ELEMENT CANVAS

ANIMATIONS

We created a scene that we rendered once at the end of
our code. That is already good progress, but most of
the time, you'll want to animate your creations.

Animations, when using Three.js, work like stop
motion. You move the objects, and you do a render.
Then you move the objects a little more, and you do
another render. Etc. The more you move the objects
between renders, the faster they'll appear to move.

PHYSICS

Physics can be one of the coolest features you can add
to a WebGL experience. People enjoy playing with
objects, see them collide, collapse, fall and bounce.
There are many ways of adding physics to your
project, and it depends on what you want to achieve.
You can create your own physics with some
mathematics and solutions like Raycaster, but if you
wish to get realistic physics with tension, friction,
bouncing, constraints, pivots, etc. and all that in 3D

AJEC | April, 2023 | © SMART SOCIETY | (www.ajec.smartsociety.org)

space, you better use a library CANNON JS , OMIO
JS ,AMMO JS(An additional library for three js).

SHADERS

A shader is, in fact, one of the main components of
WebGL. If we had started WebGL without Three js, it
would have been one of the first things we would have
to learn, and this is why native WebGL is so hard.

A shader is a program written in GLSL that is sent to
the GPU. They are used to position each vertex of a
geometry and to colourize each visible pixel of that
geometry. The term "pixel" isn't accurate because each
point in the render doesn't necessarily match each
pixel of the screen and this is why we prefer to use the
term "fragment" so don't be surprised if you see both
terms.

Then we send a lot of data to the shader such as the
vertex coordinates, the mesh transformation,
information about the camera and its field of view,
parameters like the colour, the textures, the lights, the
fog, etc. The GPU then processes all of this data
following the shader instructions, and our geometry
appears in the render.

There are two types of shaders, and we need both of
them.

Vertex shader

The vertex shader's purpose is to position the vertices
of the geometry. The idea is to send the vertices
positions, the mesh transformations (like its position,
rotation, and scale), the camera information (like its
position, rotation, and field of view).

Fragment shader

The fragment shader purpose is to colour each visible
fragment of the geometry.

The same fragment shader will be used for every
visible fragment of the geometry. We can send data to
it like a color by using uniforms —just like the vertex
shader, or we can send data from the vertex shader to
the fragment shader. We call this type of data —the
one that comes from the vertex shader to the fragment
shader— varying. We will get back to this later.

Page 21

Prankush Giri et. al., American Journal of Electronics & Communication, Vol. Ill (4), 20-23

IMPORTING OWN MODEL

When you do a render in a 3D software like Blender,
it usually looks better than the model you import into
Three.js, no matter how hard you try to get the exact
same lighting and colors. This is because of the
technique used while making the render.

We can start by loading the model. We are going to
keep the cube in the scene to make sure that everything
is working. Once we can see our portal scene, we will
get rid of the cube.

Load the model after the loaders part and test the result
in the console.

SETUP

Obtaining the Library

The Three.js project is hosted on GitHub at
https://github.com/mrdoob/three.js. The latest release
can be downloaded from
https://github.com/mrdoob/three.js/downloads. Or if
you are familiar with git, you can clone the repository:

git clone: https://github.com/mrdoob/three.js.git.

The library is under active development, and changes
to the API are not uncommon. The latest complete API
documentation can be found at the URL
mrdoob.github.com/three.js/docs/latest/, which will
redirect to the current version. There is a wiki page at
https://github.com/mrdoob/three.js/wiki/, and there is
no shortage of demos that use Three.js or articles about
Three.js development on the Web. Some of the better
articles are listed in Appendix D.

Directory Structure

Once you download or clone the repository, you can
place the files within your active development folder.
The directory structure shows the following folder
layout:

/build compressed versions of the source files
/docs API documentation
/examples examples

/gui a drag-and-drop GUI builder that exports Three.js
source

/src source code, including the central Three.js file

/utils utility scripts such as exporters

AJEC | April, 2023 | © SMART SOCIETY | (www.ajec.smartsociety.org)

Within the src directory, components are split up
nicely into the following subfolders:

/src
/cameras camera objects

/core core functionality such as colour, vertex, face,
vector, matrix, math definitions, and so on

/extra utilities, helper methods, built-in effects,
functionality, and plugins

/lights light objects

/materials mesh and particle material objects such as
Lambert and Phong

/objects physical objects
Conclusion

Hence from this paper we conclude that the three.js
library is a really useful library which can be used for
video game development using Unity or any other
game engine. It is really easy to use and we have
shown several practices of how-to setup the scenes in
different game engines using WebGL component.

Bibliography

1. Anttila, J., 2017. Creating room designer proof of
concept with Three JS.

2. Semerikov, S., Mintii, M. and Mintii, 1., 2021.
Review of the course “Development of Virtual and
Augmented Reality Software” for STEM teachers:
implementation results and improvement potentials.
CEUR Workshop Proceedings.

3. Frisk, D., 2016. WebGL: baserad ramverk
prestandajamforelse: Mellan Three. Js och Babylon.
Js.

4. Dirksen, J.,2015. Learning Three. js—the JavaScript
3D Library for WebGL. Packt Publishing Ltd.

5. Ververidis, D., Chantas, G., Migkotzidis, P.,
Anastasovitis, E., Papazoglou-Chalikias, A.,
Nikolaidis, E., Nikolopoulos, S., Kompatsiaris, I.,
Mavromanolakis, G., Thomsen, L.E. and Liapis, A.,
2018, September. An authoring tool for educators to
make virtual labs. In International Conference on
Interactive Collaborative Learning (pp. 653-666).
Springer, Cham.

Page 22

Prankush Giri et. al., American Journal of Electronics & Communication, Vol. Ill (4), 20-23

6. Danchilla, B., 2012. Three. js framework. In
Beginning WebGL for HTMLS (pp. 173-203). Apress,
Berkeley, CA.

7. Angel, E. and Haines, E., 2017. An interactive
introduction to WEBGL and three. JS. In ACM
SIGGRAPH 2017 Courses (pp. 1-95).

8. Rego, N. and Koes, D.,2015. 3Dmol. js: molecular
visualization with WebGL. Bioinformatics, 31(8),
pp-1322-1324.

9. Parisi, T., 2012. WebGL: up and running. " O'Reilly
Media, Inc.".

10. Dirksen, J., 2018. Learn Three. js: Programming
3D animations and visualizations for the web with
HTMLS and WebGL. Packt Publishing Ltd.

AJEC | April, 2023 | © SMART SOCIETY | (www.ajec.smartsociety.org) Page 23

